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a b s t r a c t

A quantitative structure–property relationship (QSPR) study is suggested for the prediction of lower
flammability limits (LFLs) of organic compounds. Various kinds of molecular descriptors were calcu-
lated to represent the molecular structures of compounds, such as topological, charge, and geometric
descriptors. Genetic algorithm was employed to select optimal subset of descriptors that have significant
eywords:
uantitative structure–property

elationship
ower flammability limit

contribution to the overall LFL property. The novel chemometrics method of support vector machine was
employed to model the possible quantitative relationship between these selected descriptors and LFL.
The resulted model showed high prediction ability that the obtained root mean square error and average
absolute error for the whole dataset were 0.069 and 0.051 vol.%, respectively. The results were also com-
pared with those of previously published models. The comparison results indicate the superiority of the

eal th
alone
enetic algorithm
upport vector machine

presented model and rev
the molecular structures

. Introduction

In chemical industry and engineering, there is a wide application
f various physicochemical data. For example, risk assessment cal-
ulations often require a wide range of physicochemical parameter
nputs. Similarly, in process design, material and energy balances

ust be based on accurate data to properly size equipment and
etermine utility consumption and cost. As a result, reliable and
ccurate data of physicochemical properties are always required
nd also considered to be absolutely necessary. However, in the
ractical industry process, the required data are often absent when
eeded, especially for the properties that related to the combustion
uch as the flash point, the auto-ignition temperature and the lower
nd upper flammability limits.

The lower flammability limit (LFL), which is usually in per-
entage volume (vol.%) at 298 K, is defined as the minimum
oncentration of a combustible substance that is capable of propa-
ating a flame through a homogeneous mixture of the combustible

nd the air under the specified conditions of test. LFL is one of
he most important indices used to rate the flammability and
ombustibility of chemical substances in the chemical industries.
nowledge of LFL values is essential to maximize safety in process
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at it can be effectively used to predict the LFL of organic compounds from
.
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design and operational procedures, such as starting up a reactor
without passing through a flammable range, and storing or shipping
the flammable product safely. So, reliable and accurate LFL data are
always required and also considered to be absolutely necessary in
the practical industry process.

Experimental LFL values are the most accurate and main source
of the LFL data used in production. However, as we known, the
experimental LFL is not absolute, but depend on several factors,
such as the geometry of the apparatus, the type and strength of
the ignition source, the test pressure and temperature, the degree
of mixing, and so on [1]. Accordingly, the measured LFL values
reported by different literatures are often inconsistent, sometimes
quite different. Besides, the measurement of LFL is expensive and
time consuming, sometimes even impossible. Consequently, in
order to support and expand the LFL dataset used for industry, the
development of theoretical prediction methods which are desirably
convenient and reliable for predicting the LFL is required.

There have already been several methods reported in the literat-
ures for predicting the LFL of organic compounds, which can be clas-
sified into several categories containing group contribution models
[2], empirical correlations [3–7], and the quantitative structure–
properties relationship (QSPR) models [8]. These methods have
been extensively reviewed by Vidal et al. [1] and Albahri [9].

The most important disadvantage of group contribution mod-

els is their limitations in use. For example, the applicability range
of these models are too related to the studied dataset, and the
new chemicals with functional groups not included in those used
for the model development will be out of the model applicability
range and thus will not be predicted. Moreover, group contribution

http://www.sciencedirect.com/science/journal/03043894
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mailto:yongpannjut@163.com
mailto:ypnjut@126.com
mailto:jcjiang@njut.edu.cn
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odels also provide a weak ability in distinguishing the isomeric
ompounds.

The empirical correlations also suffer from some important dis-
dvantages. Firstly, the use or application of these models requires
nconventional physicochemical properties, and the availability or
he lack of which may result in some limitations on their applica-
ility range. Moreover, the prediction accuracy of these models is
uite dependent on the accuracy of the needed physicochemical
roperties.

A current trend in predicting the physicochemical properties
s the use of quantitative structure–properties relationship (QSPR)

ethod. QSPR is a mathematical method that relates the proper-
ies of interest to the molecular structures of compounds which
re represented by a variety of molecular descriptors. Molecu-
ar descriptors are various molecular-based theoretical parameters

hich can be calculated using known mathematical algorithms
olely from molecular structures. Several molecular descriptors are
lways selected as the QSPR input to correlate the desired property
f compounds with special principles. The QSPR method possesses
ome obvious advantages. Firstly, the number of descriptors used
n the QSPR method is almost always lower than that used in the
roup contribution method for the same studied dataset. This fact
ay bring on more robust models. Secondly, the descriptors used

n the QSPR models have definite physical meanings, which would
e useful to probe the physicochemical information that has signif-

cant contribution to the targeted properties. Thirdly, because only
heoretical descriptors derived solely from the molecular structure
ould be involved and have continuous values, the QSPR models
eveloped should theoretically be applicable to any organic com-
ound. Consequently, the QSPR methods have been widely used

n predicting various physicochemical properties, such as boiling
oint, melting point, flash point, vapor pressure, critical properties,
ater solubility, auto-ignition temperatures, octanol/water coeffi-

ients, and so on, which have been extensively reviewed elsewhere
10–14].

In QSPR studies, the selection of appropriate modeling tech-
iques which can be applied for construction of model is one of
he key problems involved. At present, many different technologies,
uch as multiple linear regression (MLR), partial least squares (PLS),
nd different types of artificial neural networks (ANNs) have been
idely used in the QSPR modeling, which can be used for inspec-

ion of linear and nonlinear relation between interested property
nd molecular descriptors, respectively. However, as we known,
he linear method is much limited for a complex nonlinear system.

eanwhile, the neural networks also suffered some disadvantages
nherent to its architecture, such as overtraining, overfitting, net-

ork optimization, and reproducibility of results. Due to these
easons above, a more accurate and informative modeling tech-
ique which can be effectively used in QSPR analysis is desirably
eeded.

The support vector machine (SVM) is recently developed from
he machine learning community by Vapnik and co-workers [15,16].
s a novel type of machine learning method, SVM is gaining pop-
larity due to many attractive features and promising empirical
erformance. Originally, SVM was developed for classification prob-

ems, and has demonstrated a good performance in solving these
roblems by numerous successful applications [17–22]. In recent
ears, with the introduction of ε-insensitive loss function, SVM has
lso been extended to solve regression problems, and has shown
reat performance in QSPR studies due to its remarkable ability to
nterpret the nonlinear relationships between molecular structure

nd properties [23–28]. In the most of these cases, the performance
f SVM modeling either matches or is significantly better than that
f traditional machine learning approaches [25].

In the present work, the main aim was to establish a new QSPR
odel for predicting the LFL of organic compounds from their
aterials 168 (2009) 962–969 963

molecular structures by using SVM techniques. The performance
of this model was compared with those obtained by MLR, PLS and
ANN methods as well as those of previous works.

2. Support vector machine

Support vector machine is a new type of machine learning
method developed for solving both classification and regression
problems. We focus here on SVM for regression problems, the task
studied in this work. Theories of SVM for regression can be found
in the tutorials for SVM [16], and here we will take only a brief
description of the SVM in the following.

For a given regression problem, the basic idea of SVM is to map
the input vectors X onto a very high-dimensional feature space F
via a nonlinear mapping ˚ and then to do linear regression in this
space. Therefore, regression approximation addresses the problem
of estimating a function based on a given data set G = {(xi, di)}l

i=1
(xi is input vector, di is the desired value). SVM approximates the
function in the following form

f (x) =
l∑

i=1

wi · �i(x) + b (1)

where {�i(x)}l
i=1 is the set of mappings of input features, and {wi}l

i=1
and b are coefficients. They are estimated by minimizing the regu-
larized risk function R(C)

R(C) = C
1
N

N∑
i=1

Lε(di, yi) + 1
2

‖w‖2 (2)

where

Lε(di, yi) =
{

|d − y| − ε (|d − y| ≥ ε)
0 (otherwise)

(3)

In Eq. (2), C(1/N)
∑N

i=1Lε(di, yi) is the so-called empirical error,
which is measured by ε-insensitive loss function Lε(d, y). (1/2)‖w‖2

is used as a measurement of function flatness. C is a regularized
constant determining the trade-off between the training error and
the model flatness. When introducing slack variables � and �*, Eq.
(2) can be written as below:

Max R(w, �∗) = 1
2

‖w‖2 + C

n∑
i=1

(�i + �∗
i ) (yi − wx − b ≤ ε

+�i, wx + b − yi ≤ ε + �∗
i , �i, �∗

i ≥ 0) (4)

Thus, decision function Eq. (1) becomes the following form

f (x, ˛i, ˛∗
i ) =

l∑
i=1

(˛i − ˛∗
i )K(x, xi) + b (5)

where K(x, xi) is the kernel function. A given kernel function corre-
sponds to the inner product in transformed space, that is, the inner
product in that transformed space is equivalent to a kernel func-
tion of the input space (K(x, xi) = (�(x)·�(xi))). The kernel function
can effectively solve the contradiction between high dimension and
computing complexity, and is thus a great progress in the develop-
ment of SVM.

Based on the Karush–Kuhn–Tucker (KKT) conditions of

quadratic programming, only a number of coefficients (˛i − ˛∗

i
) will

assume nonzero values, and the data points associated with them
could be referred to as support vectors.

The performance of SVM for regression depends on the combi-
nation of several parameters. They are kernel function type and
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ts corresponding parameters, capacity parameter C, and ε of ε-
nsensitive loss function. There are four possible choices of kernel
unctions, such as linear, polynomial, sigmoid, and radial basis func-
ion. For the regression problems, the radial basis function kernel is
ommonly used because of its effectiveness and speed in training.
or the radial basis function kernel, the most important parame-
er is the width � of the radial basis function, which controls the
mplitude of the kernel function and, therefore, controls the gener-
lization ability of SVM. C is a regularization parameter that controls
he trade-off between maximizing the margin and minimizing the
raining error. If C is too small, then insufficient stress will be placed
n fitting the training data. If C is too large, then the algorithm will
verfit the training data [29]. The optimal value for ε depends on the
ype of noise present in the data and the number of resulting sup-
ort vectors. ε-insensitivity prevents the entire training set meeting
oundary conditions and so the value of ε can affect the number
f support vectors used to construct the regression function. The
igger ε, the fewer support vectors are selected.

In this study, we used the grid search method to find the opti-
um values for C, � and ε. The leave-five-out cross-validation was

mployed to determine the optimal parameters, and the set of
alues with the best leave-five-out cross-validation performance,
hich is scaled by the mean square error (MSE), was selected as

he optimal and final parameters for further analysis.
The overall performance of SVM model was evaluated in terms

f the average absolute error (AAE) and root mean square error
RMSE), which were calculated with the following equation:

AE =
∑n

i−1

∣∣yi − yo

∣∣
n

(6)

MSE =
√∑n

i=1(yi − yo)2

n
(7)

here yi is the observed value, yo is the predicted value, and n is
he number of compounds in the dataset.

The internal predictive capability of SVM model was evaluated
y leave-one-out cross-validation (Q 2

LOO) on the training set, which
as calculated with the following equation [30]:

2
LOO = 1 −

∑training
i=1 (yi − yo)2

∑training
i=1 (yi − ȳ)2

(8)

here yi, yo, and ȳ were respectively the observed, predicted, and
ean observed LFL values of the compounds in the training set.
The external predictive capability of SVM model on the exter-

al test set was evaluated by Q 2
ext , which was calculated with the

ollowing equation [30]:

2
ext = 1 −

∑test
i=1(yi − yo)2∑test
i=1(yi − ȳtr)2

(9)

here yi and yo were the observed and predicted LFL values of the
ompounds in the test set, and ȳtr was the mean observed LFL values
f the compounds in the training set.

. Materials and methods

.1. Dataset

The dataset used in this study was taken from the work
f Gharagheizi [8]. This set consists of a diverse set of 1038

rganic compounds, which includes hydrocarbons, halogenated
ompounds, alcohols, ethers, esters, aldehydes, ketones, carboxylic
cid, amines, amides, nitriles, nitro compounds, heterocyclic com-
ounds and compounds with multiple functional groups. The LFL
alues of these compounds range from 0.185 to 3.6 vol.%. A complete
aterials 168 (2009) 962–969

list of the compounds and its corresponding observed LFL values are
presented as supplementary materials.

The dataset is randomly divided into a training set and an exter-
nal test set. The training set is used for model development, while
the external test set is used for model validation. A QSPR model
cannot be verified for its predictivity by checking only a few com-
pounds, as in such cases the results could be obtained by chance and
it is impossible to obtain general conclusions [30]. Consequently,
the model must be tested on a sufficiently large number of com-
pounds not used in the model development (at least 20% of the
complete dataset is recommended [30]. So in this work, the whole
dataset is randomly divided into a training set with 830 compounds
(80% of the dataset) and a test set with 208 compounds (20% of the
dataset).

3.2. Descriptor calculation and reduction

In QSPR studies, compounds must be represented using molec-
ular descriptors. A wide variety of descriptors have been reported
for QSPR analysis [31,32], such as topological descriptors, geomet-
rical descriptors, electrostatic descriptors and quantum chemical
descriptors. In the present work, the molecular descriptors used
to search for the best model of the LFL prediction are calculated
by the Dragon program (web version 2.1) [33], which is a sophis-
ticated program for the calculation of molecular descriptors. All
the calculation are on the basis of the minimum energy molec-
ular geometries optimized by the HyperChem 7.5 Package based
on MM+ molecular mechanics force field and AM1 semi-empirical
method. The detailed description on the types of the molecular
descriptors that Dragon can calculate and the procedure of calcula-
tion of the descriptors can refer to Dragon software user’s guide [33].
In all, a total of 1481 descriptors were calculated for each compound
in the dataset.

After the calculation of molecular descriptors, those stayed con-
stant and near constant for all molecules were removed from the
descriptor pool, since those descriptors were not encoding the
structural differences between compounds that accounts for their
different LFL values. Further reduction of the descriptor pool was
attained by examining pairwise correlations between descriptors
so that only one descriptor was retained from a pair contribut-
ing similar information (correlation coefficient >0.95 in this study).
Finally, a total set of 578 remaining descriptors are achieved and
used to select optimal subset of descriptors that have significant
contribution to the LFL property.

3.3. Genetic algorithm based descriptor selection

The basic strategy of QSPR analysis is to find optimum quanti-
tative relationships between the molecular descriptors and desired
property, which can be then used for the prediction of the prop-
erty from only molecular structures. One of the most important
problems involved in QSPR studies is to select optimal subset of
descriptors that have significant contribution to the desired prop-
erty. The well-known genetic algorithm is just a well-accepted
method for solving this kind of problems.

Genetic algorithm (GA) is a powerful optimization method to
search for the global optima of solutions. This algorithm is devel-
oped to mimic some of the processes observed in natural evolution.
The detailed description of which can be found in Ref. [34]. In
recent years, GA has been successfully applied to feature selec-
tion in QSPR studies [8,10,24,35–40]. In this study, the GA, along

with partial least squares (PLS) method (GA-PLS), was employed to
find the optimal subset of descriptors that accurately represented
the relationships between molecular structure and LFL. GA-PLS is a
sophisticated hybrid approach that combines GA as a powerful opti-
mization method with PLS as a robust statistical method for variable
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Table 1
Descriptors selected for the SVM model for prediction of LFL.

Descriptor Type Definition
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AC Topological descriptors
W5 Topological descriptors
IC0 Topological descriptors
ATS1v 2D autocorrelations

election. This algorithm was presented by Leardi and Lupiáñez
41] for the first time. In this study, the GA-PLS programs are
mplemented using the software package PLS Genetic Algorithm
oolbox written by Leardi and Lupiáñez [41]. In this procedure, the
hromosome and its fitness in the species correspond to a set of
ariables and internal prediction of the derived PLS model, respec-
ively. Selection of useful variables is based on their frequency of
ccurrence in the best models obtained for each program. The used
arameters of GA-PLS and detailed description of how to use GA-PLS
an be found in the work of Leardi and Lupiáñez [41].

Before modeling, it must be indicated that the used GA-PLS soft-
are cannot be applied when the number of starting variables

re greater than 200. This is due to the fact that a higher vari-
bles/compounds ratio may increase the risk of overfitting. In the
resented study, this limitation is overcome by performing the
ork of “heats and finals”, which can be described as following:

1) Firstly, splitting the remaining 578 variables into three random
groups of about 200 variables each. Then, a total of three “heats”
is achieved.

2) Running GA-PLS on each “heats”, and for each “heats” a set of
selected variables is retained.

3) Combining the selected variables for each “heats” together, and
a much smaller set of variables are achieved. If they are less
than 200, the GA-PLS can be run on them (the “final”). If not,
the variables can be split again and GA-PLS can be run on the
different groups (the “semifinals”), and then the “final” can be
achieved.

.4. Software

In the present study, all calculation programs implementing GA-
LS are written in M-file by using Matlab V. 4.0, and the SVM model
s implemented based on the shareware program Libsvm V.2.84
42]. All the calculations involved in this study are performed on a
.4 GHz Intel Pentium IV with 1 GB RAM under windows XP.

. Results and discussion
.1. Results of descriptor selection

GA-PLS procedure was performed on the training set to select
he optimal set of descriptors. Since the GA is mainly a stochastic
lgorithm, the results of different GA applications would therefore

able 2
erformance comparison between models obtained by SVM, MLR, PLS, and ANN.

odel Training set

R2 Q 2
LOO

RMSE AAE

VM 0.979 0.979 0.068 0.05
LR 0.971 0.971 0.079 0.06

LS 0.971 0.971 0.079 0.06

NN
0.977a

– 0.075a 0.05
0.976b 0.075b 0.05

a Derived from 554 training samples.
b Derived from 554 training samples plus 276 validation samples.
Mean information index on atomic composition
Path/walk 5 - Randic shape index
Structural information content (neighborhood symmetry of 0-order)
Geary autocorrelation - lag 1/weighted by atomic van der Waals volumes

be slightly different. In order to get more consistent results, the GA
process needs to repeat many times to give a more reliable model. In
this work, all the GA process were repeated 100 times and the selec-
tion of useful variables was based on their frequency of occurrence
in the models with the maximal C.V. % (Cross-validated explained
variance) obtained for each operation. The frequency was calculated
by the following equation:

Frequency(i)

= the total number of descriptor(i) selected by GA-PLS
the times of operation using GA-PLS

(10)

where i was the ith descriptor.
The descriptors with higher frequency were considered as more

important in identifying the molecular structures that have signif-
icant contribution to the overall LFL property. In this particular
work, the descriptors with a frequency above 90% in each 100
operations were considered to be important. With this criterion,
a set of four descriptors were finally selected and used to build the
following model of SVM. The types and definitions of these descrip-
tors were presented in Table 1, while their corresponding values
for the whole 1038 compounds were presented as supplementary
materials.

As can be seen from Table 1, all the four descriptors selected in
the model are 2D descriptors, which could also be calculated from
the Simplified Molecular Input Line Entry System (SMILES). The
physical meanings of these descriptors are interpreted as following.

AAC is a topological descriptor to describe each atom by its own
atom type and the bond types and atom types of its first neighbors.
This descriptor is related to molecular complexity in terms of atom
types.

PW5 is a topological descriptor related to molecular shape, such
as the molecular geometry and molecular branching.

SIC0 is a topological descriptor to measure the degree of the
diversity of the elements in the molecule and also describe the
molecular shape.

GATS1v is a 2D autocorrelation descriptor, which is obtained
from molecular graphs, by summing the products of atom weights
of the terminal atoms of all the paths of the considered path length

(the lag). This descriptor is mainly related to the atomic van der
Waals volumes of a molecule, which is one of the primary dimen-
sional features of the chemicals.

All the four descriptors selected are mainly related to the
dimensional features of the molecules like molecular shape and

Test set

R2 Q 2
ext RMSE AAE

0 0.979 0.977 0.076 0.054
1 0.976 0.975 0.079 0.062
1 0.976 0.975 0.079 0.062

7a

0.977 0.973 0.082 0.0617b
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omplexity. Therefore, the overall LFL property of organic com-
ounds can be reasonably explained by their steric effects.

Also, it was noteworthy that the descriptors selected in this
tudy were quite agreed with those selected in the work of
haragheizi [8], with three topological descriptors (AAC, PW5, SIC0)

n common. This further validates the conclusion made previously
hat the molecular shape and complexity have positive relation-
hips with the overall LFL property of compounds.

.2. Results of SVM model

The powerful modeling method of SVM is then employed to
nvestigate the possible nonlinear relation between the selected
escriptors and the LFL values. The data are scaled in range [−1
o 1] before modeling, and the leave-five-out cross-validation is
mployed on the training set to determine the optimal parame-
ers (ε, � , and C). The resulting parameters of SVM model are fixed
s follows: C = 4, ε = 0.03125, � = 0.5. The corresponding number of
upport vectors is 303. With the optimal SVM model, the LFL val-
es of the compounds in the test set were predicted for external

alidation. Finally, the predicted LFL values for all 1038 organic com-
ounds are obtained and presented in the supplementary materials.
he main statistical parameters of the obtained model are shown
n Table 2. A plot of the predicted LFL values versus the observed
nes for both the training and test sets is shown in Fig. 1.

Fig. 2. The percent errors obtained by the presented model
aterials 168 (2009) 962–969

4.3. Results analysis and interpretation

As can be seen from Table 2, for the SVM model, the resulting
AAE values for both training and test sets are within the experi-
mental error of LFL determination, which is around ±0.1 vol.% [1].
Meanwhile, it is noteworthy that the RMSE values are not only
low but also as similar as possible for the training and test sets,
which suggests that the proposed model has both predictive abil-
ity (low values) and generalization performance (similar values)
[30].

Moreover, the predicted percentage error of all the 1038 organic
compounds was calculated. The obtained average percentage error
(APE) for these compounds was 5.60%, while the maximum per-
centage error was 61.86%. The results were shown in detail in Fig. 2.
As can be seen from Fig. 2, the percent error of 622 organic com-
pounds is less than 5%, which is more than half of the 1038 organic
compounds used in the presented work.

Thus, it can be reasonably concluded that: (1) the SVM method
can effectively investigate the nonlinear relationship existed
between molecular structure and LFL property, which showed that
SVM is a very promising tool for the QSPR studies. (2) The four
descriptors selected by the GA-PLS approach can account for the
structural features of the compounds related to the LFL property,
which indicates that the GA-PLS approach is a very effective method
for variable selection. (3) A new QSPR model would have been
developed, which could be successfully used to predict the LFL of
compounds with an accuracy that can approach the accuracy of
experimental LFL determination.

4.4. Model validation

In order to further analysis the model stability, the obtained
model was tested for chance correlation. A y-scrambling exper-
iment was performed in which the dependent variables were
scrambled. This y-scrambling was repeated 100 times. As expected,
the models generated would produce high RMSE values with the
minimum RMSE of 1.21 and 1.34 for the training and test sets,
respectively. These errors were much higher than the errors cal-
culated when the dependent variables were not scrambled. It can
be thus concluded that only the correct dependent variable can be
used to generate reasonable models, and the chance correlation had
little or no effect in the presented model.
Also, the residuals of the predicted values of the LFL against the
observed values for the model were listed in Fig. 3. As most of the
calculated residuals are distributed on both sides of the zero line,
one may conclude that there is no systematic error in the develop-
ment of the present model.

and the number of organic compounds in each range.
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All the results discussed above showed that the presented SVM
odel is a valid model and can be effectively used to predict the

FL of organic compounds.

.5. Definition of the applicability domain of the model

Once a QSPR model is obtained, another crucial problem is the
efinition of its applicability domain (AD). For any QSPR model, only
he predictions for chemicals falling within its AD can be considered
eliable and not model extrapolations.

There are several methods for defining the AD of QSPR models
43], but the most common one is determining the leverage val-
es for each compound [30]. To visualize the AD of a QSPR model,
he plot of standardized residuals versus leverage values (h) (the

illiams plot) was exploited in this study, which played a double
ole. Firstly, it described the impacts of the objects on models by the
alues of their leverages. Leverage indicates a compound’s distance
rom the centroid of X. The leverage of a compound in the original
ariable space is defined as [44]:

i = xT
i (XT X)

−1
xi (11)

here xi is the descriptor vector of the considered compound and
is the descriptor matrix derived from the training set descriptor

alues. The warning leverage (h*) is defined as [43]:

∗ = 3p

n
(12)

here n is the number of training compounds, p is the number
f model variables plus one. The leverage (h) greater than the
arning leverage (h*) suggested that the compound was very influ-

ntial on the model. Secondly, it presented the Euclidean distances
f the compounds to the model measured by the cross-validated
tandardized residuals. The cross-validated standardized residu-
ls greater than three standard deviation (s) units classified the
ompound as a response outlier.

The Williams plot for the presented SVM model was showed
n Fig. 4. From this plot, the applicability domain is established
nside a squared area within ±3 standard deviations and a lever-
ge threshold h* of 0.018. For making predictions, predicted LFL
ata must be considered reliable only for those compounds that

all within this AD on which the model was constructed. It can be

een from Fig. 4 that the majority of compounds in the dataset are
nside of this area. However, two compounds (compounds ethene
nd decamethyltetrasiloxane) in the training set with h > h* and the
tandardized residuals >3s, as do one of the test set (compound
hloroethene). They are both response outliers and high leverage
Fig. 4. The Williams plot describing the applicability domain of the SVM model
(h* = 0.018).

chemicals. Meanwhile, 13 compounds in the training set with h > h*
and the standardized residuals <3s, as do five of the test set. How-
ever, the 13 compounds in the training set fit the model well,
thus they can stabilize the model and make it more precise, which
implies that they should not be considered outliers but influen-
tial compounds. Also, it can be concluded from the five compounds
in the test set that the developed SVM model has good generaliz-
ability and predictivity for the compounds with descriptor values
significantly far from the centroid of the descriptor space. More-
over, eight compounds in the training set and six compounds in the
test set are wrongly predicted (>3s), but with lower leverage values
(h < h*). These erroneous predictions could probably be attributed
to wrong experimental data rather than to molecular structures
[30].

4.6. Comparison with other models

4.6.1. Comparison with MLR, PLS and ANN models
The MLR, PLS and Back-Propagation NN (BPNN) methods were

also employed to describe the relation between LFL and the selected
descriptors. By using the same four descriptors and the same 830
training samples used for SVM modeling, the optimal MLR, PLS
and ANN models were obtained and the corresponding results
were shown in Table 2. Then all the three developed models were
used to predict the LFL values of the compounds in the test set,
which have not been used for the model development. The obtained
predicted LFL values for all 1038 organic compounds were pre-
sented as supplementary materials. The main statistical parameters
of the three models were also shown in Table 2. As can be seen
from the table, the results of SVM are a little better than those
of MLR, PLS and ANN for both training and test sets, but for all
the latter three models, the obtained AAE values for both train-
ing and test sets are also within the experimental error of LFL
determination. This further validates the conclusion made previ-
ously that the four descriptors selected in this study can properly
account for the structural features of the compounds related to
the LFL property no matter what particular modeling methods are
employed.
4.6.2. Comparison with previous models
General comparisons have also been made between the SVM

model and previous models. As we known, the various models had
been developed based on different dataset and different methods,
and each model possesses its own advantages and disadvantages.
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o it is suggested that not only the prediction results but also
ore other important characteristics of models should be taken

nto account and analyzed, such as the applicability efficiency and
pplicability range of models. Consequently, detailed comparisons
etween the SVM model and some previous works are presented
s follows.

Suzuki [4] developed a nonlinear empirical model between
he LFL and the standard enthalpies of combustion of a diverse
et of organic compounds. The reported standard error for 112
ompounds was 0.23, which is definitely worse than the pre-
ented SVM model. Moreover, it must be noted that a big set
f 11 compounds that show large deviation have been regarded
s outliers and already removed from the final model. When
he 11 reported outliers are included, the corresponding stan-
ard error will increase to 0.35, which is more than 400% higher
han that of the presented model. In addition, compared with the
ork of Suzuki [4] our model: (1) includes more compounds (830

ersus 112); (2) has been externally validated with compounds
ot used in model development; (3) can be used to predict the
FL of unknown compounds solely from the molecular structure
ithout requiring any extra information on physicochemical prop-

rties.
As the work of Suzuki and Ishida [5], a general compari-

on is also made with the presented SVM model. Regarding the
nput parameters used in the models, the models of work [5]
mployed four physicochemical parameters, while the presented
odel employs four molecular descriptors which can be directly

alculated from the molecular structure. Moreover, these theoret-
cal descriptors have definite physical meanings, which are useful
o probe the physicochemical information that has significant con-
ribution to the LFL property. Regarding the statistical parameters
f the models, both the MLR and NN models of work [7] were
orse in terms of AAE and RMSE than the presented model. More-

ver, the presented model is developed based on larger number
f compounds in the dataset (830 versus 144), and also more
ompounds are employed in the test set for model external val-
dation (208 versus 50). Finally, regarding the applicability range
f the models, the use of the models of work [7] requires extra
ata of needed physicochemical properties, and if only one of the
eeded properties is missing, calculation cannot be performed
o predict the LFL. Oppositely, because only theoretical descrip-
ors derived solely from the molecular structure is involved, the
resented model would theoretically be used to reliably predict
he LFL for any organic compound belonging to its applicability
omain.

As the work of Gharagheizi [8], in which a QSPR model had
lso been developed for prediction of LFL, a general comparison
an also be made with the presented SVM model. Regarding the
nput parameters used in the models, both models employed four

olecular descriptors which can be directly calculated from the
olecular structure. Regarding the statistical parameters of the
odels, the presented SVM model is obviously better in terms

f AAE and RMSE than the model of work [8]. However, regard-
ng the applicability efficiency of the models, the model of work
8] is a simple MLR model, which can be easily understood and
xpediently applied, while the presented SVM model is more com-
licated and professional knowledge needed. In addition, the model
f work [8] is developed based on a little larger number of com-
ounds in the dataset (845 versus 830), and also external validated
y employing more compounds in the test set (211 versus 208).
inally, regarding the applicability range of the models, both models

ere QSPR models, which would theoretically be used to reli-

bly predict the LFL for any organic compound belonging to their
pplicability domains. However, the AD of the presented SVM
odel has been verified, while the one of the model of work [8]

ot.
aterials 168 (2009) 962–969

5. Conclusion

In the present work, based on the novel modeling technique of
support vector machine, a new QSPR model has been developed
for predicting the LFL of a diverse set of organic compounds from
the molecular structure alone. By performing the model valida-
tion, it can be concluded that the presented SVM model is a valid
model and can be effectively used to predict the LFL of organic
compounds with an accuracy that can approach the accuracy of
experimental LFL determination. Moreover, the mechanism of the
model was interpreted, and the applicability domain of the model
was defined. When comparing the results of the model to those of
previously published models, it showed that the presented model
possesses some obvious superiority. Thus it can be reasonably con-
cluded that the proposed model would be expected to predict LFL
for new organic compounds or for other organic compounds for
which experimental values are unknown. Additionally, the pre-
sented method could also identify and provide some insight into
what structural features are related to the LFL property of organic
compounds.
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